ON THE VORTEX EQUATION ON THE COMPLEX PLANE

Giorgadze G., Akhalaia G., Jikia V.

Abstract. In this paper we consider the vortex equation as a particular case of Carleman-Bers-Vekua Equation and analyzed solutions space of this equation from the point of view of generalized analytic functions.

Keywords and phrases: Vortex equation, generalized analytic function.

AMS subject classification (2000): 74K25.

Consider the equation (Carleman-Bers-Vekua equation below)

$$\frac{\partial w}{\partial \overline{z}} + A(z)w + B(z)\overline{w} = 0 \tag{1}$$

where $A, B \in L_{p,2}(\mathbb{C}), p > 2$. It is known [1] that every solution of (1) can be expressed in the form

$$w(z) = \Phi(z)e^{-T(A+B\frac{\overline{w}}{w})},$$

where $\Phi(z)$ is analytic and

$$Tf = \frac{1}{\pi} \iint_{\mathbb{C}} \frac{f(\zeta)d\xi d\eta}{\zeta - z}, \ \zeta = \xi + \eta,$$

if A and B are merely quasi-summable, i.e., $A_1 = \varphi^{-1}A$ and $B_1 = \psi^{-1}B$ are in $L_{p,2}(\mathbb{C}), p > 2$, for some analytic functions $\varphi(z)$ and $\psi(z)$ with arbitrary singularities (isolated in \mathbb{C}), then every solution of (1) can be expressed in the form

$$w(z) = \Phi(z)e^{\varphi(z)\omega(z) + \psi(z)\chi(z)}$$
(2)

where $\Phi(z)$ is analytic, $\omega = -T(A_1)$ and $\chi = -T(B_1 \overline{w} w^{-1})$. Denote by $\mathcal{A}(A, B)$ the solutions space of (1).

The main statement of the theory of generalized analytic functions is: for a given analytic function Φ , (2) is a solution of (1) whenever the function $\chi(z)$ satisfies the equation

$$\chi = T_0(\chi),\tag{3}$$

where $T_0(\chi) = -T[B_*e^{-2iIm(\psi\chi)}]$, $B_* = B_1 \overline{\Phi} e^{-2iIm\varphi T(A_1)}$ and fixed point argument yields existence of a solution of (3). Such representation (2) is used to study the behavior of solutions of (1) near arbitrary isolated singularities of A and B.

When the Carleman-Bers-Vekua equation is *irregular* [2], it means, that if both functions A and B or at least one of them doesn't belong to $L_{p,2}(\mathbb{C})$, p > 2, then the analytic properties of the classes $\mathcal{A}(A, B)$ are different. In other words, for *irregular equations the dependence of the functional classes* $\mathcal{A}(A, B)$ on the coefficients A and B is rigid (see [2]).

As is well known, for every function $a \in L_{p,2}(\mathbb{C}), p > 2$, using the integral

$$A(z) = -\frac{1}{\pi} \iint_{\mathcal{C}} \frac{a(\zeta)d\xi \, d\eta}{\zeta - z} \quad \zeta = \xi + i\eta \tag{4}$$

we can construct a $\frac{\partial}{\partial \overline{z}}$ -primitive on the whole plane with respect to a generalized derivative $\frac{\partial}{\partial \overline{z}}$ in the Sobolev sense [1]. Therefore if we consider Carleman-Bers-Vekua equations with irregular coefficients, it is necessary to investigate the problem of existence of $\frac{\partial}{\partial \overline{z}}$ -primitives of functions not belonging to the class $L_{p,2}(\mathbb{C})$, p > 2. Note that the integral (4) is meaningless for such functions.

The following theorem is valid.

Theorem 1. [2] Every function a(z) of the class $L_p^{loc}(\mathbb{C})$, p > 2, has $\frac{\partial}{\partial \overline{z}}$ -primitive function Q(z) on the whole complex plane satisfying the Hölder condition with the exponent $\frac{p-2}{p}$ on each compact subset of the complex plane \mathbb{C} ; moreover if q(z) is one $\frac{\partial}{\partial \overline{z}}$ -primitive of the function a(z) then all $\frac{\partial}{\partial \overline{z}}$ -primitives of this function are given by the formula

$$Q(z) = q(z) + \Phi(z), \tag{5}$$

where $\Phi(z)$ is an arbitrary entire function.

For the detailed Proof see [2].

Introduce subclasses of the class $L_p^{loc}(\mathbb{C})$, p > 2, elements of which have $\frac{\partial}{\partial \overline{z}}$ primitives, satisfying certain additional asymptotic conditions. In particular, denote by $J_0(\mathbb{C})$ the set of functions $a \in L_p^{loc}(\mathbb{C})$, p > 2 for which there exists $\frac{\partial}{\partial \overline{z}}$ -primitive Q(z) satisfying the following condition

$$ReQ(z) = O(1), \quad z \in \mathbb{C}.$$
 (6)

Denote by $J_1(\mathbb{C})$ the set of the functions $a \in L_p^{loc}(\mathbb{C}), p > 2$, for which there exists $\frac{\partial}{\partial \overline{z}}$ primitive Q(z), satisfying the following conditions

$$z^{n}exp\{Q(z)\} = O(1), \quad z \in \mathbb{C},$$
(7)

for every natural number n.

We used the following Theorem from [2].

Theorem 2. The function a(z) of the class $L_p^{loc}(\mathbb{C})$, p > 2, belongs to the class $J_1(\mathbb{C})$ if and only if its $\frac{\partial}{\partial \overline{z}}$ -primitive exists and satisfies the condition

$$\lim_{z \to \infty} z^k exp\{Q(z)\} = 0,$$
(8)

for every natural number k.

Let $\mathbb{R} \times \mathbb{C}$ be a trivial hermitian vector bundle with the structural group U(1). Denote by \mathcal{A} and Γ moduli space of gauge equivalence connections and smooth sections of this bundle, respectively.

Below we consider (two dimension) Yang-Mills-Higgs-theory on \mathbb{R}^2 . The dynamical variables for YMH-theory are gauge potential

$$A = A_1(x_1, x_2)dx_1 + A_2(x_1, x_2)dx_2 \in \mathcal{A}$$

and a scalar - so called Higgs field

$$\Phi = \Phi(x_1, x_2) = \Phi(x_1, x_2) + i\Phi(x_1, x_2) \in \Gamma$$

YMH-potential defines a field

$$F_A = dA + A \wedge A = \frac{\partial A_1}{\partial x_1} - \frac{\partial A_2}{\partial x_2}.$$

Denote by \mathcal{F} the Yang-Mills-Higgs functional on the space $\mathcal{A} \times \Gamma$:

$$\mathcal{F} = \frac{1}{2} \int_{\mathbb{R}^2} D_A \Phi \wedge \star \overline{D_A \Phi} + F_a \wedge \star F_A + \frac{\lambda}{4} \star (\Phi \overline{\Phi} - 1)^2 dx_1 \wedge dx_2, \qquad (9)$$

where $D_A = d + A$ is a covariant derivative respect to connections A, and \star - the Hodge star operator on the space of differential forms.

Suppose $A \to -iA$. Then $-iF_A = -idA$,

$$(\nabla_A)_1 \Phi = \left(\frac{\partial}{\partial x_1} - iA_1\right) \Phi, \quad (\nabla_A)_2 \Phi = \left(\frac{\partial}{\partial x_2} - iA_2\right) \Phi.$$

In these notations we have

$$D_A \Phi = -iA\Phi.$$

The **problem** (A) is to find such pair (A, Φ) for which \mathcal{F} is finite.

The finiteness condition for (9) is equivalent to the conditions:

$$|\Phi| \to 1$$
, $D_A = d\Phi - iA\Phi \to 0$, as $|x| \to \infty$

and in this case the integer

$$N = \frac{1}{2\pi i} \int_{\mathcal{R}^{\in}} F_A$$

is a topological invariant of the line bundle.

The variational equations for the action \mathcal{F} are the following equations:

$$d \star F_A = \frac{i}{2} \star (\Phi \overline{D_A \Phi} - \Phi D_A \Phi), \qquad (10)$$

$$D_A \star D_A \Phi = \frac{\lambda}{2} \star (\Phi \overline{\Phi} - 1) \Phi.$$
(11)

By Bogomol'ny theorem [3] when $\lambda = 1$ then $\mathcal{F} \ge \pi |N|$. In case, when $N \ge 0$ the identity $\mathcal{F} = \pi |N|$ is achieved if and only if the pair (A, Φ) satisfies the following equations:

$$\left(\frac{\partial \Phi_1}{\partial x_1} + A_1 \Phi_1\right) - \left(\frac{\partial \Phi_2}{\partial x_2} - A_2 \Phi_1\right) = 0, \tag{12}$$

$$\left(\frac{\partial\Phi_1}{\partial x_2} + A_2\Phi_2\right) + \left(\frac{\partial\Phi_2}{\partial x_1} - A_1\Phi_1\right) = 0, \tag{13}$$

$$F_{12} + \frac{1}{2}(\Phi_1^2 + \Phi_2^2 - 1) = 0.$$
(14)

Proposition 1. [3] When $\lambda = 1$, the solutions of the equation (10),(11) are the solutions of the equations (12),(13),(14) and vice versa.

Introduce the standard notations:

$$z = x_1 + ix_2, \quad \partial_z = \frac{1}{2} \left(\frac{\partial}{\partial x_1} - i \frac{\partial}{\partial x_2} \right), \quad \partial_{\overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x_1} + i \frac{\partial}{\partial x_2} \right).$$

Then $A = \alpha dz + \bar{\alpha} d\bar{z}$ and

$$D_A \Phi = (\partial_z - i\alpha) \Phi + (\partial \bar{z} - \bar{\alpha}) \Phi d\bar{z}, \qquad (15)$$

where $\alpha = \frac{1}{2}(A_1 - iA_2), \ \bar{\alpha} = \frac{1}{2}(A_1 + iA_2).$

Proposition 2. The equations (12),(13) are the real and imaginary parts of the equation

$$D_A \Phi - i \star D_A \Phi = 0. \tag{16}$$

The proof of this proposition immediately follows from (15) and the properties of Hodge \star - operator.

From (15) follows also that other form of the equation (16) is

$$\partial_{\bar{z}}\Phi = i\bar{\alpha}\Phi.\tag{17}$$

The last equation is particular case of the Carleman-Bers-Vekua equation (B = 0 in (1)). Using this observation we give simply proof of the following statement from [3].

Theorem 3. Let $N \ge 0$ be a given integer and $z_1, z_2, ..., z_N$ are given points on the complex plane, among which may be equal points (i.e. $z_i = z_k$ when $i \neq k$ allowed.) Then there exists the solution to equations (12), (13), (14) unique up to gauge equivalence, with the following properties:

1) The solution is smooth on the complex plane;

2) The zeros of Φ are concentrated at the points $z_1, z_2, ..., z_N$ and $\Phi(z, \bar{z}) \sim$ $c_j(z-z_j)^{n_j}, \quad c_j \neq 0;$

3) $|D_A \Phi| \leq const(1 - |\Phi|);$

4) $N = \frac{1}{2\pi} \int_{\mathcal{R}^{\in}} F_A = \sum_{z_j, z_j \neq z_i} n_j.$ To prove this theorem we used the technique of the theory of generalized analytic functions developed in [1], [2].

The number N is the Chern number and unique analytic (and topological) invariant for the complex line bundle L on $\mathbb{C} \cup \{\infty\} \cong S^2$. It is known that there exists a one-to-one correspondence between the space of gauge equivalent Carleman-Bers-Vekua equations and the space of holomorphic structures on the bundle $L \to S^2$ [2]. From this there follows the existence of (0, 1)-type form ω , such that $\partial_{\bar{z}} - \omega$ is the connection of this bundle. All forms of gauge equivalence ω are solutions of the problem (A). It remains to prove that the equation $\partial_{\bar{z}} \Phi = \omega \Phi$ has the solution with zeros at the points $z_1, z_2, ..., z_N$. From Theorem 1 and Theorem 2 it follows, that the solution of the equation

$$\frac{\partial w}{\partial \bar{z}} + Aw = 0$$

on the whole plane, where $A \in L_p^{loc}(\mathbb{C}), p > 2$, has the form has

$$w(z) = \Phi(z) e^{-Q(z)},$$

where Q(z) is one of the $\frac{\partial}{\partial \bar{z}}$ -primitives of the function A(z) and $\Phi(z)$ is an arbitrary entire function. Take $\Phi(z) = (z - z_1)^{n_1}(z - z_2)^{n_2}...(z - z_m)^{n_m}, z_i \neq 0$ $z_j, i \neq j$ and $N = \sum_{j=1}^m n_j$. Then the pair (A, Φ) has all required properties from Theorem and therefore is a solution of the problem (A).

REFERENCES

1. Vekua I.N. Generalized Analytic Functions. Nauka, 1988.

2. Akhalaia G., Giorgadze G., Jikia V., Kaldani N., Makatsaria G., Manjavidze N. Elliptic Systems on Riemann Surfaces. *Lecture notes of TICMI, TSU press*, **13** (2012), 3-167.

3. Jaffe A., Taubes C. Vortices and Monopoles. Birkhäuser, 1980.

Received 03.09.2016; accepted 12.11.2016.

Authors' addresses:

Georgia

G. Giorgadze
Faculty of Exact and Natural Sciences &
I. Vekua Institute of Applied Mathematics
I. Javakhishvili Tbilisi State University
2, University str., Tbilisi 0186
Georgia
E-mail: gia.giorgadze@tsu.ge

G. Akhalaia
I. Vekua Institute of Applied Mathematics
I. Javakhishvili Tbilisi State University
2, University str., Tbilisi 0186
Georgia
E-mail: giaakha@gmail.com
V. Jikia
I. Vekua Institute of Applied Mathematics
I. Javakhishvili Tbilisi State University
2, University str., Tbilisi 0186

E-mail: valerianjikia@viam.science.ge

18