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ON THE VORTEX EQUATION ON THE COMPLEX PLANE

Giorgadze G., Akhalaia G., Jikia V.

Abstract. In this paper we consider the vortex equation as a particular case
of Carleman-Bers-Vekua Equation and analyzed solutions space of this equation
from the point of view of generalized analytic functions.
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Consider the equation (Carleman-Bers-Vekua equation below)

∂w

∂z
+A(z)w +B(z)w = 0 (1)

where A,B ∈ Lp,2(C), p > 2. It is known [1] that every solution of (1) can be
expressed in the form

w(z) = Φ(z)e−T (A+B
w
w
),

where Φ(z) is analytic and

Tf =
1

π

∫∫
C

f(ζ)dξdη

ζ − z
, ζ = ξ + η,

if A and B are merely quasi-summable, i.e., A1 = φ−1A and B1 = ψ−1B are in
Lp,2(C), p > 2, for some analytic functions φ(z) and ψ(z) with arbitrary singu-
larities (isolated in C), then every solution of (1) can be expressed in the form

w(z) = Φ(z)eφ(z)ω(z)+ψ(z)χ(z) (2)

where Φ(z) is analytic, ω = −T (A1) and χ = −T (B1ww
−1). Denote by A(A,B)

the solutions space of (1).
The main statement of the theory of generalized analytic functions is: for a

given analytic function Φ, (2) is a solution of (1) whenever the function χ(z)
satisfies the equation

χ = T0(χ), (3)

where T0(χ) = −T [B∗e
−2iIm(ψχ)], B∗ = B1

Φ
Φe

−2iImφT (A1) and fixed point argu-
ment yields existence of a solution of (3). Such representation (2) is used to study
the behavior of solutions of (1) near arbitrary isolated singularities of A and B.

When the Carleman-Bers-Vekua equation is irregular [2], it means, that if
both functions A and B or at least one of them doesn’t belong to Lp,2(C), p > 2,
then the analytic properties of the classes A(A,B) are different. In other words,
for irregular equations the dependence of the functional classes A(A,B) on the
coefficients A and B is rigid (see [2]).

As is well known, for every function a ∈ Lp,2(C), p > 2, using the integral

A(z) = − 1

π

∫∫
C

a(ζ)dξ dη

ζ − z
ζ = ξ + iη (4)
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we can construct a ∂
∂z -primitive on the whole plane with respect to a generalized

derivative ∂
∂z in the Sobolev sense [1]. Therefore if we consider Carleman-Bers-

Vekua equations with irregular coefficients, it is necessary to investigate the prob-
lem of existence of ∂

∂z -primitives of functions not belonging to the class Lp,2(C),
p > 2. Note that the integral (4) is meaningless for such functions.

The following theorem is valid.
Theorem 1. [2] Every function a(z) of the class Llocp (C), p > 2, has ∂

∂z -
primitive function Q(z) on the whole complex plane satisfying the Hölder con-
dition with the exponent p−2

p on each compact subset of the complex plane C;
moreover if q(z) is one ∂

∂z - primitive of the function a(z) then all ∂
∂z -primitives

of this function are given by the formula

Q(z) = q(z) + Φ(z), (5)

where Φ(z) is an arbitrary entire function.
For the detailed Proof see [2].
Introduce subclasses of the class Llocp (C), p > 2, elements of which have

∂
∂z primitives, satisfying certain additional asymptotic conditions. In particular,
denote by J0(C) the set of functions a ∈ Llocp (C), p > 2 for which there exists
∂
∂z -primitive Q(z) satisfying the following condition

ReQ(z) = O(1), z ∈ C. (6)

Denote by J1(C) the set of the functions a ∈ Llocp (C), p > 2, for which there

exists ∂
∂z primitive Q(z), satisfying the following conditions

znexp
{
Q(z)

}
= O(1), z ∈ C, (7)

for every natural number n.
We used the following Theorem from [2].
Theorem 2. The function a(z) of the class Llocp (C), p > 2, belongs to the

class J1(C) if and only if its ∂
∂z -primitive exists and satisfies the condition

lim
z→∞

zkexp
{
Q(z)

}
= 0, (8)

for every natural number k.
Let R×C be a trivial hermitian vector bundle with the structural group U(1).

Denote by A and Γ moduli space of gauge equivalence connections and smooth
sections of this bundle, respectively.

Below we consider (two dimension) Yang-Mills-Higgs-theory on R2. The dy-
namical variables for YMH-theory are gauge potential

A = A1(x1, x2)dx1 +A2(x1, x2)dx2 ∈ A

and a scalar - so called Higgs field

Φ = Φ(x1, x2) = Φ(x1, x2) + iΦ(x1, x2) ∈ Γ.

YMH-potential defines a field

FA = dA+A ∧A =
∂A1

∂x1
− ∂A2

∂x2
.
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Denote by F the Yang-Mills-Higgs functional on the space A× Γ :

F =
1

2

∫
R2

DAΦ ∧ ⋆DAΦ+ Fa ∧ ⋆FA +
λ

4
⋆ (ΦΦ− 1)2dx1 ∧ dx2, (9)

where DA = d+A is a covariant derivative respect to connections A, and ⋆- the
Hodge star operator on the space of differential forms.

Suppose A→ −iA. Then −iFA = −idA,

(∇A)1Φ =

(
∂

∂x1
− iA1

)
Φ, (∇A)2Φ =

(
∂

∂x2
− iA2

)
Φ.

In these notations we have
DAΦ = −iAΦ.

The problem (A) is to find such pair (A,Φ) for which F is finite.
The finiteness condition for (9) is equivalent to the conditions:

|Φ| → 1, DA = dΦ− iAΦ → 0, as |x| → ∞

and in this case the integer

N =
1

2πi

∫
R∈

FA

is a topological invariant of the line bundle.
The variational equations for the action F are the following equations:

d ⋆ FA =
i

2
⋆ (ΦDAΦ− ΦDAΦ), (10)

DA ⋆ DAΦ =
λ

2
⋆ (ΦΦ− 1)Φ. (11)

By Bogomol’ny theorem [3] when λ = 1 then F ≥ π|N |. In case, when N ≥ 0
the identity F = π|N | is achieved if and only if the pair (A,Φ) satisfies the
following equations: (

∂Φ1

∂x1
+A1Φ1

)
−

(
∂Φ2

∂x2
−A2Φ1

)
= 0, (12)

(
∂Φ1

∂x2
+A2Φ2

)
+

(
∂Φ2

∂x1
−A1Φ1

)
= 0, (13)

F12 +
1

2
(Φ2

1 +Φ2
2 − 1) = 0. (14)

Proposition 1. [3] When λ = 1, the solutions of the equation (10),(11) are
the solutions of the equations (12),(13),(14) and vice versa.

Introduce the standard notations:

z = x1 + ix2, ∂z =
1

2

(
∂

∂x1
− i

∂

∂x2

)
, ∂z =

1

2

(
∂

∂x1
+ i

∂

∂x2

)
.

Then A = αdz + ᾱdz̄ and

DAΦ = (∂z − iα)Φ + (∂z̄ − ᾱ)Φdz̄, (15)
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where α = 1
2(A1 − iA2), ᾱ = 1

2(A1 + iA2).
Proposition 2. The equations (12),(13) are the real and imaginary parts of

the equation
DAΦ− i ⋆ DAΦ = 0. (16)

The proof of this proposition immediately follows from (15) and the properties
of Hodge ⋆- operator.

From (15) follows also that other form of the equation (16) is

∂z̄Φ = iᾱΦ. (17)

The last equation is particular case of the Carleman-Bers-Vekua equation
(B = 0 in (1)). Using this observation we give simply proof of the following
statement from [3].

Theorem 3. Let N ≥ 0 be a given integer and z1, z2, ..., zN are given points
on the complex plane, among which may be equal points (i.e. zj = zk when i ̸= k
allowed.) Then there exists the solution to equations (12),(13),(14) unique up to
gauge equivalence, with the following properties:

1) The solution is smooth on the complex plane;
2) The zeros of Φ are concentrated at the points z1, z2, ..., zN and Φ(z, z̄) ∼

cj(z − zj)
nj , cj ̸= 0;

3) |DAΦ| ≤ const(1− |Φ|);
4) N = 1

2π

∫
R∈ FA =

∑
zj ,zj ̸=zi nj .

To prove this theorem we used the technique of the theory of generalized
analytic functions developed in [1], [2].

The number N is the Chern number and unique analytic (and topological)
invariant for the complex line bundle L on C ∪ {∞} ∼= S2. It is known that
there exists a one-to-one correspondence between the space of gauge equivalent
Carleman-Bers-Vekua equations and the space of holomorphic structures on the
bundle L → S2 [2]. From this there follows the existence of (0, 1)-type form ω,
such that ∂z̄−ω is the connection of this bundle. All forms of gauge equivalence ω
are solutions of the problem (A). It remains to prove that the equation ∂z̄Φ = ωΦ
has the solution with zeros at the points z1, z2, ..., zN . From Theorem 1 and
Theorem 2 it follows, that the solution of the equation

∂w

∂z̄
+Aw = 0

on the whole plane, where A ∈ Llocp (C), p > 2, has the form has

w(z) = Φ(z) e−Q(z),

where Q(z) is one of the
∂

∂z̄
-primitives of the function A(z) and Φ(z) is an

arbitrary entire function. Take Φ(z) = (z − z1)
n1(z − z2)

n2 ...(z − zm)
nm , zi ̸=

zj , i ̸= j and N =
∑m

j=1 nj . Then the pair (A,Φ) has all required properties from
Theorem and therefore is a solution of the problem (A).
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